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ABSTRACT 

The motion in a ternary system consisting of a central body, A ,  close companion By and distant 
companion, c y  is considered and the perturbations of B due to c are determined. The osculating 
orbit of B relative to A can be an eccentric ellipse, not extremely elongated (say, e 2 0.3), and the 
orbit of c around the center of mass of A and B is a fixed ellipse which might have a large ec- 
centricity, e ' .  The mutual inclination, I of the orbits of B and c can also be large. The possibility 
of solving the problem without limitation to small e '  was indicated earlier by Brown. His basic 
small  parameter is A = m m l  + m 2  +m3)] (n ' /n )  ( 1  - . The use of A and the introduction of 
the true anomaly f '  of C as the independent variable permit one to take the effect of e '  into account 
in a closed form without developing ser ies  in powers of e' . 

[ A 

The solution pursued here is a development of perturbations into trigonometric s e r i e s  with 
arguments linear in f ' and similar in form to the standard arguments of the lunar theory. To this 
end we consider the squares of A, of the parallax, and of the mean eccentricity of B as small 
parameters. 

The problem is solved by applying the Krylov-Bogolubov method to eliminate the significant 
short-period effects from the Milankovich differential equations for the general perturbations of 
the Laplacian vector S and the areal velocity Z .  Thus, the elements which are affected only by the 
long period perturbations must then be established. 

We conclude that for small eccentricity there a r e  resonances at I 39" and at I 2 141", and 
that the proposed trigonometric ser ies  solution cannot be done outside the intervals 0" 5 I,, < -39" 
and 180" 2 I ,  > -141". This fact gives r ise  to a discussion of the convergence and limits of applica- 
bility of the Delaunay series.  Some of our results a r e  compared with those of Delaunay. We con- 
clude that the Krylov-Bogolubov method can improve the Delaunay theory because it leads to more 
compact series and their convergence can be investigated more easily. In addition, they apply to 
any orbital inclination up to the critical value. 
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APPLICATION OF THE KRYLOV-BOGOLUBOV 
METHOD TO SOLUTION OF THE STELLAR THREE-BODY PROBLEM 

by 
Peter Musen 

Goddard Space Flight Center 

INTRODUCTION 

The motion in a ternary system consisting of the centralbody, A ,  the close companion B, and 
the distant companion, C, is considered in the present paper. The masses of the components a r e  
m m2, and m3, respectively. 

We assume that the osculating orbit of B relative to A is an eccentric ellipse, not extremely 
elongated (say, e j 0.3), and that the orbit of C around the center of masses of two close companions 
A and B is a fixed ellipse which might have a largeeccentricity, e ' .  The mutual inclination I of the 
orbits of B and C can also be large. In the further exposition we shall discuss a limitation which 
must be imposed on I in order to avoid a resonance condition. 

We have to determine the perturbations of B as caused by C. The problem so formulated is 
called the stellar three-body problem because the conditions described above exist in some triple 
star systems. The case of the lunar satellite, because neither e nor I must be small, evidently 
represents a special case of the stellar problem. The role of C is played by either the Earth or 
the Sun. If e ,  e ' ,  and I are small we have the classic lunar problem; thus the importance of the 
general stellar problem is evident, and attempts should be made to solve it in an analytic or semi- 
analytic way. 

The works of Kozai and Kovalevsky (References 1 and 2, respectively) on the problem of mo- 
tion of the lunar satellite deserve to be mentioned. They solved the problem by assuming that 
e '  

his work on the stellar three-body problem (Reference 3). The basic small parameter in Brown's 
theory is 

= 0. The possibility of solving the problem without this limitation w a s  indicated by Brown in 

where n' is the mean motion of C and n is the mean motion of B. In the theory of Delaunay (Refer- 
ence 4)  the basic parameter is n'/n, but the use of A ,  and also the introduction of the true anomaly 
f ' of C as the indendent variable, permit one to take the effect of e '  into account in a closed form 
without resorting to the development of series in powers of e ' .  
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The form of the solution we  are pursuing here is the development of perturbations into trig- 
onometric series with the arguments linear in f ' and similar in form to the standard arguments 
of the lunar theory. In order  to achieve such a solution we consider the square of the mean eccen- 
tricity of B, A ,  and the parallax as small  parameters. This limitation is justified by the circum- 
stance that the orbits of lunar satellites with large eccentricities will be highly unstable. In addi- 
tion the fact that the Moon is a body and not a point, together with the assumption that the parallax 
is small, imposes a certain upper limit on the eccentricity of B. The mutual inclination I and e ' ,  

however, are not presupposed to be small. 

In keeping the orbit stable, the long-period perturbations are more important than the short- 
period ones. This fact is the foundation of every satellite theory which makes use of the method of 
variation of astronomical constants. The way to solve the problem is to eliminate gradually all of 
the significant short-period perturbations from the differential equations. Thus the elements which 
are affected only by the long-period perturbations must be established. The establishment of such 
elements and the formation of the differential equations governing their variations require the solu- 
tion of a chain of linear partial differential equations of the first order. After the differential equa- 
tions for the new elements are finallyformed, we can integrate them using the Poincare'small pa- 
rameter method (Reference 5), provided the eccentricity is not large. 

The elimination of the short-period terms is facilitated if in the original differential equations 
the coefficients of the derivatives of the disturbing function are linear in the elements. For this 
reason the Laplacian vector t and the areal velocity Z represent a convenient choice. Their gen- 
eral perturbations are governed by the differential equations of Milankovich (Reference 6). The 
vectorial products contained in these equations a r e  the linear functions of t and -d. The inconven- 
ience caused by the division by Z in the equation for  &/dt disappears after the elimination of the 
short-period effects. These elements have a direct kinematic meaning and with their help we can 
easily visualize the motion of the orbit in space. They a r e  not canonical and consequently it is 
convenient to apply the method of Krylov-Bogolubov (Reference 7) to solve the problem. 

The differential equations for the elements affected only by the long-period perturbations can 
be written as a quasi-linear system. We can solve it either by developing the solutions into power 
series in a small parameter o r  by applying the method of successive approximations. In recent 
years we have applied the digital computer to the development of the semianalytic lunar theories 
of the Hansen type (Reference 8). The machine develops the disturbing function, forms the differ- 
ential equations, and integrates them by the process of successive approximations. In this way 
we produced the theories of lunar satellites and of the xth satellite of Jupiter. As a consequence 
of this experiment it is suggested that one substitutes the numerical values of the constants of in- 
tegration at the outset and then let the machine obtain the solution in the form of trigonometric 
series with purely numerical coefficients by means of successive approximations. At each ap- 
proximation we shall obtain c1 , the mean motion of the longitude of the perigee, from a quadratic 
equation. 

2 



If the mean eccentricity E is zero, then, as we shall see 

where k is the sine of the mean inclination I, and e is the mean eccentricity. From this we conclude 
that for small eccentricity there is a resonance at I, - 39" and also at I ,  - 141". We also conclude 
that the development of perturbations of S and Z into trigonometric se r ies  with the standard argu- 
ments of the lunar theory cannot be done outside the intervals 0"l  I ,  < -39" and 180"1 I ,  > -141". The 
existence of this critical inclination in the special case e '  = 0 was pointed out by Kevorkian (Ref- 
erence 9) and Kozai (Reference 10). The fact that it exists also for e '  # 0 gives r i se  to the discus- 
sion about the convergence and limits of applicability of the ser ies  of Delaunay (Reference 4). In a 
further exposition we shall compare some of our results with the results of Delaunay. 

BASIC DIFFERENTIAL EQUATIONS 

Let be the unit vector directed toward the osculating pericenter of B and be the unit vector 
normal to the osculating orbit plane of B. For the components of @ and 2 relative to an inertial 
system located in the orbit plane of C, we have a se t  of standard formulas: 

> 
I I 
2 2 

P, = cos2 - c o s  n + sin2 - c o s  (n - 2 3 ) ,  

I I 
s i n  n - s in2  2 s i n  (n - 2 ~ ) ,  Pz = cos2 

R ,  = s i n Q s i n I  , 

R = -  
2 c o s  fl s i n  I , 

i 

R, = C O S  I .  J 
Then 
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If the equation of motion of the satellite is taken in the normalized form, 

- d 2 7  - - - -  i t g r a d R ,  
dt2 r3 

then the equations of Milankovich have the form 

d t  - -. aR 1 - e2 - a R  c2 - aR 
d t  az c2 a t  e2 a t  

- e x  - t- c x  - t n -  e - , - 

(5) 

and 

Decomposing Z ,  Z ,  aR/a;, and %/a; along the axes of the inertial system, with the X- and y-axes 
in the orbit plane of C, we have the system of Milankovich's scalar equations: 

- de2 = (e3 a R  - - e l  -) a R  tCZ 1 - e2 (. - c1 % ) + n ,  c2 a.e a R  e 2 ,  
ae3 

3 -  
ac1 ac3 ae1 d t  

dc* - a R  - c l  -)+ a R  (p3 - a R  

ac3 ae1 
__ - 
d t  

a R  
d t  

We shall make use of the complex elements 

g 1 1  = e  + i e 2 ,  h l = - c 2 + i c  1 '  

h = - c 2  - i c l ,  

h3 = c3  . 
2 

g2 = e 2 '  
g, = - l e3 .  

(i =R) 

4 



-9 -. . .. , . . 

instead of the real  elements e l ,  e,, e3, c,, c,, and c,. Their introduction permits us to operate 
with power ser ies  instead of trigonometric series and to put the result in compact and symmetri- 
cal form. There is an affinity between the use of the complex coordinates in Hill 's lunar theory 
and the use of the complex vectors in the present theory. From Equations 1 and 2 we have 

g = e cos2 - I exp i n  + e sin2 - I exp i (-n + 2n) 
2 2 

= e(P1 + i P2) , 

g2 = e cos2 -exp(-i.ir) I + e  sin2 - I exp i ( 7  - 2 0 )  
2 2 

= e(P1 - iP , )  , 

- _ -  i eP3, 

h, = d-) sin I exp(-a)= d-) (- R, - iR,), 

and 

We have from Equations 15 to 20: 



and 
a R  - aR - - - .  
ah, ac3 

Equations 9 to 14 in the new variables are: 

- = ( - 2 h  dh2 - a R  + h  _. 

d 7  ah, ah3 

and 

where we put 
r = i t ,  

A = i8 .  

This system of differential equations admits a first integral 

gl h, - g2 h, + 2 g3 h3 = 0 ,  

which is equivalent to the statement that 
+ 

? - R = O .  

(33) 

(34) 

(35) 

If we eliminate from R the short-period t e rms  containing 8 in the argument, then the new 
disturbing function [R] will contain only .e', V, and s2 in the argument. Thus [R] will yield only 
the long-period and secular effects in the elements. 

The elimination of the short-period t e rms  can be performed either by the method of Von Zeipel 
(Reference 11) or  by the Krylov-Bogolubov method. In the treatment of the perturbations of the 
noncanonical elements the Krylov-Bogolubov method should be used. 

In the problem of motion of a close satellite we can set, with an accuracy up to h3, 
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where the long-period te rms  having A4 as a factor are neglected. With the elimination of the ef- 
fects depending upon 4 the element a becomes invariable. Then it is more convenient to define 
h , ,  h2, and h3 by 

h, =c2 (-R, t i  R,), (37) 

h, = ( -  R, - i R,), (38) 

than by Equations 18 to 20. 

With these new definitions Equations 27 to 32 take the form: 

and 

where we put 

From 

and 

g2 an an an 
d r  

2 e2 = g,  g, - g, 

1 - e  - - h, h, t h: , 

(45 1 

(47 1 

(48) 
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we conclude that in addition to the integral 33 the system of Equations 40 to 45 admits also the 
integral 

gl g, + hl h2 - gi t h: = 1. (49) 

Because g, = El and h2 = hl we a r e  not compelled to use all of Equations 40 to 45, but only 
four of them, say, Equations 40, 42, 43, and 45. 

We consider the main problem in the theory of satellites: to determine the motion of the 
satellite under the influence of the disturbing function 

where D is the cosine of the angle between 
of the first and higher orders. Their inclusion with accuracy up to X3 does not present any 
difficulty. It is necessary to emphasize that in any attempt to achieve a higher degree of accuracy 
it is meaningless to include the higher harmonics alone without taking the "cross actions" between 
the lower harmonics into consideration. 

and r'. In the beginning we omit the parallactic t e rms  

Taking into account Kepler's law, 

ml t m2 t m3 

+ m2 

we can write Equation 46 in the form 

Lf e'not small, then in treating the long-period effects it is better to use f ' ,  the true anomaly of the 
distant companion, as the independent variable instead of time. This idea was suggested by Brown 
(Reference 3)  in his work on the stellar three-body problem. 

In accordance with the form of the differential equation of motion of the satellite given in Equa- 
tion 5, we have 

o r  

Putting 

5 = exp i f '  

8 



and introducing the operator 

analogous to the operator 

d 
d(n - n ' ) i  t 

of Hill's lunar theory, the system of Equations 40 to 45 becomes 

aF aF (54) 

(55) 

and 

where 

F = A(1 + e' cos  f ' )  . - 1 Jo2v (Ly P, (u) d8  (60) 
2 n  

and 

(61) n' A =  m3 - (1 - e '  2 ) - 3 / 2  
ml +m, + m 3  

is Brown's parameter. The use of A permits one to write the final results in a more compact form, 
thus avoiding a considerable portion of the development into the power ser ies  relative to e ' .  

In his earlier work (Reference 12) the author obtained the formula 

3 L %' (iy P, (0) d& = - t 5(< * G o ) '  + ( z x  3 ' ) 2  - e 2 1  , 
2n 4 

(58) 

(59 1 

9 



where Go is the unit vector in the direction of 7' , and S' and 3 are defined by means of Equations 3 
and 4'. We have 

(63) 
+ 1 

2 
e iio = e, cos  f '  t e2 sin f'  =-(g,  5-l t g, <I, 

Substituting these values into Equation 62 we obtain, after some easy vectorial transformations, 
taking Equations 47 and 48 into account; 

(65) 
3 
16 

F =  - A ( l  + e' cos f') [(Sg;t h:) <-2 

t (6g ,g ,  t 2h,h, t 4g:t 4 h 3  

t (5g: t hj)  C2]. 

Substituting this value of F into Equations 54 to 59 we obtain 

3 
4 

Dg, = - A ( 1  t e' cos f ' )  t a,,+' C 2 ) ,  

and 

where we put 

3 
4 

Dh, = - A ( l  t e' cos f ' )  t a,,+, <'), 

10 



I 

and 
- - 5g; - h:. Y2,tZ - (84) 

KRYLOV-BOGOLUBOV METHOD 

The Krylov-Bogolubov method (Reference 7) has not yet achieved general recognition in lunar 
problems: A recent application of this method by Morrison (Reference 13) to the planar lunar 
problem deserves especially to be mentioned. We shall give here a short outline of the method of 
Krylov-Bogolubov from the viewpoint of its application to the stellar three-body problem. The 
differential equations we are considering here are of the form: 

Dg, = AG, (g,, g,, g,, h,, h,, h,; 5 ;  A), (85) 

where G,, G,, G,, H, , H, , and H, are the series of polynomials in 5 and 5-1 with the coefficients 
being polynomials in gl, g,, g,, h,, h2 ,  and h,. 

11 



and 

The Krylov-Bogolubov method consists in finding a transformation 

g, = g; t ha l  (g;, g;, g;, h;. h;, h;; 5 ;  A), 

so that the differential equations in the new variables do not contain 5 

and 

Let us introduce the operators 

and 

Then the operator D as applied to Equations 91 to 96 can be written in the form 

D = K + A A .  

It follows from Equations 91 to 105 that 

Dg,  = AG'; +. AKa,  + A 2 A  a l ,  

12 



and 

Introducing the shift operator 

Dg, = XG: + A K c ,  + h2 A c , ,  

Dh, = AH; + XKa, + h2 Aa,, 

Dh, = AH; + AKb, + h2 Ab,, 

Dh, = AH; + AKc,  + h2 A c , .  

and combining Equations 85 to 90 and 106 to 111, we obtain 

hc; + AKb, + A' Ab, = ( 1  + T) AG,, (114) 

and 
AH; + AKb, + A' Ab, = (1 + T) AH,, 

AH; t A K c ,  + A' A c ,  = ( 1  t T) AH,, 

where in c, , G, , . . . the elements g , ,  g,  , . . . 
We seek the solutions for a,  , b, , . . . c2 , and Gi , C; , . . . 

are replaced by g; , g; , . . . . 
H: in the form of power series in A :  

Xa, = h a , ,  + A2alz  + .  . . , (119) 

Ab, = Ab,, + h'b,, + . . . , (120) 

(122) h a ,  = h a , ,  + h2aZ2 + .  . . , 

Ab, =Ab, ,  + X'b,, + .  . . , (123) 

13 



and 

AH: = AH:, + A'H,', + . . . , 

We have similar developments for the operators 1 + T and AA, 

1 + T = l + X T ,  +AZT,+. . . , 

the operators T, are Fai de Bruno differential operators (Reference 14) 

XA = XA, t X'A, t . . . , 

where, from Equations 112 and 104, we deduce 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

From Equations 113 to 130 we obtain 

G:, t Ka,, = G , ,  H i 1  t Ka,, = H,, 

(136) I GTz t Ka,, t A, all = T, G,, 

G;, t Kb,, t A, b,, = T, G,, 

c:, t Kcl2 t A, cll = T, G,, 

H12 t Ka,, t A, a,, = T, H,, 

H;, t Kb,, t A, b,, = T, H,, 

H:, t Kc,, t A, c,, = T, H,, 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

14 



Let us  make use of the Krylov-Bogolubov averaging operator M. In our case its role consists 
in removing the positive and the negative powers of 5 from the expression to  which it is applied, 
thus reducing this expression to  the te rm which is independent of 5 .  In addition to M, it is convenient 
to  introduce the operator P by extracting the nonzero powers of 5 from the given expression. It is 
useful to remark that 

and 

M K  = 0, 

M P = P M = O ,  

M T 1  P = 0, 

where K1 designates the inverse operator of K ,  and the operators A ,  A , ,  A , ,  . . . , and M are 
commutative: 

MA = A M ,  

MA.  = A . M ,  j = 1 ,  2, 3, . * J J  

From Equations 138 and 139 we have, in addition, 

M A T '  P = 0 .  

Taking Equation 137 into consideration w e  deduce from Equation 135: 

I G;, = M G , ,  HT1 = MH,, 

G;, = MG,, H i 1  = MH,, 

GJ, = MG,, HJ, = MH,, 

a l l  =K-' P G , ,  a,, = K' P H , ,  

b,, = T1 P G , ,  b,, =K-' P H , ,  

c , ,  = K 1  P G , ,  c,, = K1 P H,. 

From Equations 137, 138, 140, and 142 we obtain 

GT, = MT, G,, 

G;, = MT, G,, 

HT, = MT, H,, 

H;, = MT, H,, 

HI, = MT, H,, 

(139) 

(143) 

15 



and, as a consequence, we have 

(144) 

a,, = IC1 P(T H, - A ,  a,,), 
1 

a,, = K-' P(T, G, - A ,  al l ) ,  

b,, = K-' P(T, G, - A ,  b,,), b,, = K-' P (T1 H, - A, b,,), 

c12 = K-' P(T, G, - A, C, ,), c,, = K1 P(T, €I3 - A ,  c2,), 

. . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . .  

This process is continued until all the significant t e rms  containing 5 a r e  eliminated. 

The differential equations for the elements affected only by the long-period t e rms  become 

(145) 

Dg; = M ( l  + T,) G, + . . . , Dhi = M ( l  +T,) H, + * . * 1 

Dg; = M ( 1  + T,) G, + . . . , Dh*, =M(1 t T,) H, + . 1 

Dg; = M ( 1  +T,) G, + . . . , Dh; = M ( 1  +T,) H, t . . . . 

In further exposition we shall change the notations and shall write g, , g, , . . 

INTEGRATION OF DIFFERENTIAL EQUATIONS OF STELLAR THREE-BODY PROBLEM 

instead of g;, g; , . . . . 

From the Equations 66 through 71 we have: 

3 
l 4  

G = --(1 + e' cos f ' )  + u l ,+ ,  Ct2), 

3 
4 

G, = --(1 t e' c o s  f ' )  (fil,-,  5-' + P,,,), 

3 
3 4  G = - (1  t e' cos  f ' )  (yl,-, 5-' + Y , , ~  + Y,,,, Ct2) ,  

3 
1 4  

H = --(1 + e' cos f ' )  + 5"). 

3 H, = --(1 4 + e' cos f ' )  ( f i , , - ,  5-' + 4 , o ) v  

J 3 
3 8  H = -(1 t e' cos  f ' )  (Y,,-~ 5-' t Y,,,, 5+2). 

16 



Making use of Equations 141, 142, and 146 we obtain: 

3 3 
C' = 11 + q % , o *  H;1 = + q % o  ' 

3 3 G* 2 1  = - - P  1.0 '  H* = - - P  
2 1  4 2 . 0  ' 

Hll = 0 , 3 
GS1 = t q Y l , o '  

and 

3 3 ,  
a l l  = ,a l ,+2 5' + s e  (a1,o 7 0  +a1,+2 7 + 2 ) *  

3 3 
b l l  = K P l , - 2  C-' --e' 8 (Pl,-2 7-2 t Pl ,o  T ~ ) ~  

CZ1 = -- 3 ( Y 2 , - 2  r2 - Y 2 , + 2  C 2 )  16 

3 
16 + - e' ( Y ~ , - ~  7-2 + Y ~ , + ~  7+2)1 

where we put 

1 
3 

T-2 = -- 5-3 - 

To = - 5-1 + 5 ,  

1 
r+2 = t 5 +y 5' . 

(147) 

(148) 

' (149) 

17 



From Equations 133 and 145 to 148 and taking 

2 M ( C2 7-2 cos f ’ )  = -- 
2 3 ’  
1 M ( 5 - 2 r - 2  cos f’) = 0 , 

1 
~ ( 5 - 2  ro COS f ’ )  = -, 

2 

1 2 M (C-2 Tt2 COS f‘) = -, 3 2 

M ( r - 2  cos f’) =--, 

1 M ( r O  C O S  f ’ )  = 0, M ( c2 r0 COS f‘) = -- 2 ’  

M ( c2 7+2 COS f‘) = 0 M (rt2 COS f’) = -, 

into consideration, we obtain: 

18 



3 Dh =--XP 
2 4 2,-2 

Becauseg2=gl 
four, Equations 150, 152, 153, and 155, will  suffice. 

and h, = K,, w e  a r e  not obliged to use all of Equations 150 to 155. The choice of 

The formulas 15 to 20 suggest the substitution 

g, = EP1, g2 = EP2? g, = EkP,. 

h, = kw,, h, = kw2, h, = w,, 

Here p l ,  p 2 ,  p , ,  w l ,  w 2 ,  and w 3  a r e  the functions of C c 1 ,  c c 2  and c 2 ,  k 2 ;  C ,  is the mean motion of 
the longitude of the perigee; and c 2  is the mean motion of the longitude of the ascending node. For 
the values of E and k small enough, the quantities gl, g 2 ,  g,, hl ,  h z ,  and h, a r e  developable into 
series in kCc2, and k < - c 2 ;  both c 1  and c 2  a re  ser ies  in E ' ,  k 2 ,  e", and a', where a is the 
parallactic factor. We consider here the case of a close satellite and do not discuss the influence 
of the parallactic terms. The theory presented here could be extended further by including the 
higher powers of A and a. 

The fact that the Moon is a body and not a point, together with the assumption that the paral- 
lactic factor is small, imposes a limitation on the upper value of E .  We shall consider the case 
when k is not small, but let us  assume that E is small or moderate, say E 6 0.3, or  less. If we 
make use of the substitution (Equation 156) the differential equations become: 

+ A, + k2 el2 B,, (157) 
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and 

where we put 

Dw, = A 2 e I 2  E,, 

3 Dp - -A@,w, t 3kZ p3w1) 
1-  4 

9 2 
t - A z ( l  64 + T  e") 

+ A E 2 F 1 t k  e" G, , 

15 A, =- -  4 PlP, 

+? 64 di+$ \ e")[( - ~ O p 1 p 2 w l  - 5 p i w z  -4op,p,w,)t  10k2piW1 

B = T  
64 

1 
9 45 
64 64 

B = - k 2  

45 
32 

t--E2k2 (plwl +P,w,) ,  

F, = 2(1+3 2 e'2)(-25p:p2 t 1 0 k 2 p  
64 

Y 
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45 G = -p wz 
3 2 2 3  

9 
t -k2 128 (t  II plw:  - 2 4 p , w Z w 3  - 10pzwlw2 t p l w : ) ,  

and 

45 45 
64 64 

+--ezp (p2 -p2) --kZ p3(w: -w:). 

In the lunar theories of Delaunay, Hill, and Brown the motion of the node and of the perigee 
are developed into the power series in E ' ,  kZ, e" and a2. However, the domain of covergence 
of these ser ies  is not given and their application to the cases of large inclinations and large ec- 
centricities cannot be taken for granted. The choice of the small parameter A and the appearance 
of the closed form factor 1 + (2/3) remove the necessity of development relative to e ' ,  as 
it has been found by Brown. In order to remedy the situation relative to e Z  and kZ, we suggest 
here the numerical computation of c and c Z  by successive approximation rather than development 
into power series.  The numerical values of E ,  k, e ' ,  and A are substituted from the Outset. 

e '  

We have to rewrite Equations 157 to 160 and also to develop the equations for the determina- 
tion of c 1  and c 2  in a form suitable for the application of the process of successive approximations. 
A s  a by-product we shall also establish the domain of convergence to the inclination. 

The integrals 34 and 49 take the form 

( k z w , w z  t w i )  + e Z  (p lpz  - k 2 p i )  = 1 .  

The last equation is to be used for determining x, at each cycle of the iterative process. The 
first equation can serve as a check of computations. 

We have three groups of terms in the right side of Equations 157 to 160: the terms propor- 
tional to A, those proportional to A' (1 + (2/3) e") ,  and those proportional to A' e". The last 
two groups were produced by the mutual action of the short-period terms. The terms of the first 
two groups correspond to the t e rms  included by Brown in the theory of the stellar three-body 
problem. They are the source of secular changes in the argument of the perigee and the longitude 
of the node, and in addition they produce the main long-period effects in the elements. In the per- 
turbations of canonical elements of Delaunay, the first two groups give r i s e  to the t e rms  depending 
upon the mean argument of the perigee. The terms proportional to A' e '  are omitted in Brown's 
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theory. To the accuracy with which we a r e  concerned, they have no influence on the mean motions 
of the arguments; they will  produce in e' and Z only the long-period effects proportional to A e'z. 

We have 

Dw, = hv,, w1 t h W,, 

DW, = hz e r 2  w,, 

(157') 

(158') 

(159') 

(160') 

WC-" P,) = ~ p l l ( ~ - C Z ~ l ) + h 2 / 1 1 2 k 2 (  5''' pZ)tXpl3k2p, t A(<-" P , ) ,  

and 
~ p 3  = ~ p 3 1  [ ( C - ~ ~ P , )  t (ctCz P2)I + ' ~ 3  9 

where we set  

Vll = -- x + - * ( l t $ e ' 2 )  9 ( 2 ~ :  - k 2 ) ,  (161') 
4 0 6 4  

(162') 

(163') 
64  3 

kZ w1 (w, w, - 1 )  64 

3 
4 

- - w1 (w, - % )  t h e" B, , 

W, = B, , 

P, = t-- kZ (w, - < 9 +c 

4 ') p, 

+2c - 9 h (1 t $ e") k Z  [ 5(w: - 5 ') P, t 8x0 (w, - <tcz) p3] t E' F, 
64 

(165') 

(166') 

(167') 
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I '  

and 

P, = p31 [ (w, - CmC2)  P, t (w, - C c 2  P,] t A e', Q,. 

Eliminating p3 from Equation 159' by means of Equation 160', we obtain 

D2 p,) = A /L,, D(C-" p,) t A' plZ k2 D ( C c 2  P2) 

(168') 

where we set 

A2 S ,  = A' p,, k2 P, t A D  ( P1) . (159"') 

Equations 157', 158', 159", and 160' are in a form suitable for the application of the method of 
successive approximations. 

In order to describe the process of integration of Equation 159" let us consider a typical 
te rm and a typical differential equation 

where u = (2  k, t 1) C ,  t ( 2  k, - 1) C ,  

Using the substitution 

C - c 2  p, = K, 5 "  t K, <-" P 

we obtain 

2 K, = A pll a K, + A2 p,, kZ a K, t A2 p,, p31 kZ (K1 t K2) + A2 Nl = 0 1 

o r  

(170) 
(a2 - 2 A' k2 p13 p,,) (K, t K2)  - a ( A p l l  - A2 k2 p,) (K, - K2) = A2 (N, t N1) v 

a ( A p l l  t A' k2 p,,) (K1 t K2) - a2 (K, - K2) = h2 (Nz - N1). 

Setting 

c1 = A  ul , 

C, = A 5, , 
u - u  = u ,  1 2  

and P = ( 2  k, + 1) r1 t (2 h, - 1) a2. 
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where cr, and cr, are of the zero order relative to E ,  we deduce from Equation 170 

(171) 
(p2 - 2 k2 p13 ~ 3 1 )  (K, t K ~ )  - P (P,, - k k 2  p12) (K, - K,) = N, t N, , 

P(P11 + k2 PI,) (K1 + K2) - P 2  (K, - K2) = N, - NI . 

The determinant of this system is 

and the determinants associated with K, + K, and q - K, are 

The solving of this system is a straightforward process and, generally speaking, the division by A 
does not introduce any small divisor. 

For 

the part  independent f rom E and k disappears in p. For small values of e and k the value of C, f c2 

then will also become small. Thus, this case requires a special discussion, and we shall show 
that in the problems of integration, even for small values of E and k ,  no small divisors will ap- 
pear which would make the very coefficients of 5 j(c1+c2) and c-j(c1tc2) large. 

A special consideration is also required for the case 

i, = i, = 0,  

because it is connected with the determination of the mean motion of the pericenter and with the 
finding of the first approximation to p, . 

In agreement with the theory of the long period effects by Poincarg (Reference 4), we have the 
following form of solution of 5 - c 2 ~ l ,  p3 and of 5C2pl,  p3: 
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and of w3 - xo and Xe" W, : 

In addition 

li, + i,l = o , 

and for P, 

N. . = - N - .  ~ , - l . - i , + l  ' l " 2  

M .  . = - M m i  - 1 , - i 2 + 1 ;  
' 1 9 ' 2  

but for P, 

N i  ,, i , = N- , - , , - +, 

l 1 . l 2 - M - i  - I , - i  
M. . - 

2 + 1  

In our case we have to consider the t e rms  

Retaining only these terms in P, and < - c 2  P,, we can set 

and 

where M , ,  MZ, C,, and C, a r e  the functions of E and k 2 .  If E and k both a r e  small, then we shall 
assume that they a r e  of the same order of magnitude. 

We have to set  

N, = p,, k2  M, - ,8 C,. 
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where only the t e rms  of the lowest order are written explicitly. We have 

K, - K  - - - (C1 1 t C 2 )  t-- 
4 1  

2 -  
h 1  

(179) 

From differential Equations 157 to 160 we easily deduce as the first approximation for small values 
of k and E :  

c 2 = - - k ( x o t T c 2 )  3 5 t * 9 

4 

3 
8 

c1 + c2 = --k(3k2 t 5 E ’ )  + . . , 

Consequently, 

and from Equations 178 and 179 we can see that in the process of integration the order of the coef- 
ficients of long-period terms satisfying the condition i ,  - i, = -1 remains the same as that before 
the integration. 

In the case u = C, - c 2 ,  we have 
K, = 1, 

p = u , - u  2 -  - u  

and Equations 170 become 
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In order to simplify the elimination we add the expression 

The coefficients N, and N, a r e  taken from the corresponding part  in s, . 
Elimination of K, leads to 

for the determination of u and, consequently, of c,. 

suitable for the application of the method of successive approximations : 
Equation (183) can be written in a form 

The t e rms  contained in are of the higher orders. They contain either e 2  or  A as a factor. The 
value of u in Equation 185 can be taken from the preceding cycle of iteration. 

To obtain the first approximation to C, and c, in the case of a large inclination, we neglect 
2 and h2 and set  

3 
O', = -TXo ' 

In accordance with Equations 162' to 164' and 184 w e  have 

Thus 
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We see that for a small value of E we have a resonance effect at k2 = 2 / 5 ,  1 %  39", or I x 141". The 
critical argument is the argument of the perigee. 

We have to determine the value of K,.  From Equation 181 we obtain 

In the first approximation we have 

and 

where K, is defined by means of Equation 191. Substituting these values in Equation 160', we  have 

and taking Equation 187 into account we obtain the first approximations to po : 

Using the solutions in Equations 192 and 193, we start the process of iteration and continue it till 
we reach the convergence. The integration of Equations 157' and 158' is a straightforward process 
and requires no additional explanation. 

COMPARISON WITH DEVELOPMENTS OF DELAUNAY 

The lunar theory of Delaunay gives the mean motions of the argument of the perigee g and 
of the longitude of the ascending node h in the form of power ser ies  in the mean values of n'/n, 

y = sinI/2, e ,  e'  and a ' /a .  The information about the domain of convergence of these series 
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L 
cannot be obtained in an easy way. We shall attempt to  obtain some information about the con- 
vergence using the closed-form expressions for ( c1 - c2 )' and c 2 .  Delaunay's development of 
d g / d t  corresponds to  c1 - c2 of our theory; dh/dt  corresponds to c2. We consider those parts of 
d g / d t ,  d h / d t ,  .cl, and c2 which do not contain€ because previously we made the assumption that it 
is small. We mentioned also that if this assumption is made then the solution can be obtained in 
the form of trigonometric s e r i e s  with the usual arguments of the lunar theory. 

From Equations 157' and 184 we have accurately up to A3, 

and, accurately up to h 2 ,  
c2  = X v l l .  

If E = 0 then we have k 2  = 1 - x:, and making use of Equations 161' to 164' we obtain with 
the same accuracy as before the closed-form expressions 

and 

The results 196 and 197 can be extended to include higher powers of A and of the parallax. Of 
course, the parallactic factor must be properly modified. The solving of this problem will consti- 
tute the topic of future work. It will require keeping the higher orders  of the "cross actions" of 
short-period terms and parallactic terms.  In order to facilitate comparison of our results with 
those of Delaunay, we shall eliminate X, from Equations 196 and 197 by means of 

yo = 1 - 2 y2. 

and 

(199) c2 = - - A ( l  3 - 2 y ' )  (1  - 6  yz + 6 y 4 ) .  
4 

Assuming that y is small, we obtain from Equation 198: 

keeping only the terms necessary to make the comparison with the results of Delaunay. 
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I, ,*- I 
In the definition of h the factor (1 - 

expanded form in Delaunay's results is beyond any doubt: it can be seen directly if one looks care- 
fully at the developments of dg/dt and dh/dt . 

e '  2)-3/2 is included. The presence of this factor in the 

Thus, we have to compare the parts multiplied by A and hZ with the correspondingr-terms 
multiplied by n'/n and <n')'/n2 in the expansion of dg/dt and dh/dt, and we see that they are identical. 

We can use Equations 196 and 197 for high inclinations without any reservation about 
the convergence relative to y or  X, , if I, is not in the neighborhood of the critical values I * 39", 
or  1 
development of the perturbations of the elements into trigonometric series. 

141". However, a few degrees of deviation of 1 from 39" or 141" is enough to warrant the 

In the close neighborhood of the critical inclination the theory of resonance must be applied. 
The critical inclinations evidently cannot be obtained easily from the developments of Delaunay . 

It is of interest to mention that in the systems of Jupiter and Saturn the inclinations of the 
orbit planes of the satellites with respect to the orbit planes of the planets all lie between the 
limits given above. The inclination of the orbit plane of Jupiter VIII lies near the resonance case. 

CONCLUSIONS 

The Krylov-Bogolubov method for  eliminating the short-period terms can be applied to solve 
the stellar three-body problem and, in particular, to solve the lunar problem. The perturbations 
in the elements Z ,  ;, and 4 can be obtained in the form of Fourier ser ies  with the arguments linear 
in the independent variable. 

The method of Krylov-Bogolubov can serve to amend the theory of Delaunay because it 
leads to ser ies  in a more compact form and their convergence can be investigated more easily. 
In addition, they a r e  applicable to any orbital inclination up to  the critical value. 

Our next goal consists in the further application of the Krylov-Bogolubov method to establish 
the solution including the t e rms  of higher order in A and U. The work will be extended in two di- 
rections: to find the compact form of the analytical development and to arrange the computational 
scheme in order to use the method of successive approximation. The development will be based 
on the author's scheme (Reference 15) of computing the higher order effects in  the Krylov- 
Bogolubov method. 

(Manuscript received February 10, 1966) 
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APPENDIX A 

Symbols 

8 - mean anomaly of B, the close companion in ternary system. 

e - osculating eccentricity of orbit of B. 

a - osculating semimajor axis of B. 

T - osculating longitude of the perigee of B. 

n - osculating longitude of the ascending node of B.  

r - position vector of B relative to the central body A, r = I r 1 .  

e - osculating Laplacian vector Of B. 

c - osculating areal velocity of B, c I ,  c 2 ,  c3 - the notations for the components of C .  At the end 
of the exposition the notations c 1  and c 2  designate the mean motions of the perigee and of the 
node. 

c 1  - mean motion of longitude of the pericenter of B.  

c 2  - mean motion of the longitude of the ascending node of B. 

I - mutual orbital inclination of the close and of the distant companion C .  

r ’  - position vector of C relative to the center of masses of A and B. 

f ’ - true anomaly of c. 

C ’  - eccentricity of the orbit of the distant companion C. 

R - disturbing function. 
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